Pengeluaran Biodiesel

Biodiesel merupakan hasil biasa bagi transesterifikasi stok suapan minyak sayuran atau lemak haiwan. Terdapat beberapa kaedah bagi melaksanakan tindak balas transesterification ini termasuk proses kelompok biasa, proses superkritikal, kaedah ultrasonik, malah kaedah gelombang mikro.

Secara kimianya, biodiesel yang ditransesterifikasi terdiri daripada campuran ester monoalkil dalam rantaian panjang asid lemak. Bentuk paling biasa menggunakan metanol (ditukar kepada natrium metoksida) untuk menghasilkan ester metils (biasanya dirujuk sebagai "Ester Metil Asid Lemak" (fatty acid methyl ester- FAME) kerana ia merupakan alkohol paling murah yang ada, sungguhpun ethanol boleh digunakan bagi menghasilkan ethyl ester (biasanya dirujuk sebagai biodiesel "Ethyl Ester Asid Lemak" - fatty acid ethyl ester atau FAEE) dan kandungan alkohol lebih tinggi seperti isopropanol dan butanol juga telah digunakan. Menggunakan alkohol dengan molekul lebih berat meningkatkan ciri-ciri aliran sejuk bagi ester yang terhasil, dengan kos tindak balas transesterification kurang effisen. Pengeluaran lipid transesterification digunakan bagi menukar minyak asas kepada esters yang dikehendaki. Sebarang asid lemak bebas (FFAs) dalam minyak asas samaada ditukar kepada sabun atau disingkirkan dari proses, atau ia di esterified (menghasilkan biodiesel lanjut) dengan menggunakan pemangkin berasid. Selepas pemprosesan ini, tidak seperti minyak lemak tulin, biodiesel memiliki ciri-ciri pembakaran yang menyamai diesel petrolium, dan boleh menggantikannya dalam kegunaan masa kini.

Hasil sampingan proses transesterifikasi merupakan penghasilan gliserol. Bagi setiap 1 tan biodiesel yang dihasilkan, 100 kg gliserol dihasilkan. Pada asalnya, terdapat pasaran yang baik bagi gliserol, yang membantu ekonomi proses secara keseluruhannya. Bagaimanapun, dengan peningkatan penghasilan biodiesel sejagat, harga pasaran bagi gliserol kasar (mengandungi 20% air dan sisa pemangkin) telah merundum. Penyelidikan sedang dijalankan secara sejagat bagi menggunakan gliserol ini sebagai blok binaan kimia.

Biasanya, gliserol kasar ini perlu ditulinkan, biasanya dilakukan menggunakan penurasan hampagas, yang memerlukan tenaga yang banyak. Gliserol tulin (98%+ tulin) kemudian boleh digunakan secara langsung, atau ditukar kepada barangan lain. Pengumuman lanjut dilakukan pada tahun 2007: Usahasama Ashland Inc. dan Cargill mengumumkan rancangan bagi menghasilkan propilena glikol di Eropah dari gliserol[10] dan Dow Chemical mengumumkan rancangan yang sama bagi Amerika Utara.[11] Dow juga merancang membina kilang di China bagi menghasilkan epiklorhidrin dari gliserol.[12] Epichlorhydrin merupakan sumber kasar bagi resin epoxy.

Kadar pengeluaran

Pada tahun 2007, keupayaan pengeluaran biodiesel bertambah dengan pesat, dengan purata pertumbuhan tahunan antara 2002-06 melebihi 40%.[13] Pada tahun 2006, jumlah pengeluaran terkini bagi jumlah pengeluaran sebenar boleh didapati, pengeluaran biodiesel dunia keseluruhan sekitar 5-6 juta tan, dengan 4.9 juta tan diproses di Eropah (yang mana 2.7 juta tan dari Jerman) dan kebanyakannya yang lain dari USA. Pada Julai 2009, cukai dikenakan pada biodiesel Amerika Syarikat yang di import Kesatuan Eropah bagi mengimbangi persaingan dari Eropah, terutama pengeluar Jerman.[14][15] In 2007 production in Europe alone had risen to 5.7 million tonnes.[16]Keupayaan pengeluaran Eropah pada berjumlah 16 juta tan. Ini berbanding jumlah keseluruhan permintaan di US dan Europe sekitar 490 juta tan (147 juta gelen).[17] Jumlah keseluruhan pengeluaran dunia bagi minyak sayuran bagi semua tujuan pada tahun 2005/06 adalah sekitar 110 juta tan, dengan sekitar 34 juta tan setiap satu bagi minyak kelapa sawit dan minyak kacang soya.[18]

Yield

Jadual di bawah menunjukkan kecekapan hasil bahan mentah per unit luas yang memberi jesan kepada kebolehan meninggikan penghasilan ke tahap industri besar untuk memberi kuasa kepada sebilangan besar kenderaan.

Hasil-hasil umum
BahanHasil
L/haGelen AS/ekar
Alga[n 1]~3,000~300, 1500-3000
Triadica sebifera[n 2][n 3]90797
Minyak kelapa sawit[n 4]4752508
Kelapa2151230
Biji sesawi[n 4]954102
Soya (Indiana)[19]554-92259.2-98.6
Ka[n 4]84290
Bunga matahari[n 4]76782
Hemp[petikan diperlukan]24226
  1. est.- see soy figures and DOE quote below. The larger estimates comes from the New York Times, "Colorado Company to Take Algae-Based Fuel to the Next Level," 11 Nov 2008, M.L. Wald
  2. Klass, Donald, "Biomass for Renewable Energy, Fuels,
    and Chemicals", page 341. Academic Press, 1998.
  3. Kitani, Osamu, "Volume V: Energy and Biomass Engineering,
    CIGR Handbook of Agricultural Engineering", Amer Society of Agricultural, 1999.
  4. 1 2 3 4 Biofuels: some numbers

Bahan api alga belum lagi ditentukan dengan tepat, tetapi DOE melaporkan bahawa alga menghasilkan 30 kali lebih banyak tenaga per ekar daripada hasil-hasil tanah seperti biji soya.[20] Hasil 36 tan per hektar dikira sebagai praktikal oleh Institut Oseanografi Ami Ben-Amtotz di Haifa yang telah mengasilkan alga secara komersial selama lebih 20 tahun.[21]

Tumbuhan jatropha disumberkan sebagai biodiesel dengan hasil tinggi tetapi banyak bergantung kepada keadaan iklim dan tanah. Anggaran terendah hasil ialah 200 gelen AS per ekar (1.5 ke 2 tan per hektar) per tumbuhan; dua atau lebih tumbuhan boleh dicapai dalam iklim sesuai.[22] Pokok ini tumbuh di Filipina, Mali dan India, tahan kemarau dan boleh menjalani penyambungan dengan tanaman komersial lain seperti kopi, gula, buahan dan sayuran.[23] Tumbuhan ini sesuai dalam tanah separa gersang dan boleh menyumbang untuk memperlahankan penggurunan menurut kepada penyokong.[24]

Perbincangan kecekapan dan ekonomi

According to a study by Drs. Van Dyne and Raymer for the Tennessee Valley Authority, the average US farm consumes fuel at the rate of 82 litres per hectare (8.75 US gal/acre) of land to produce one crop. However, average crops of rapeseed produce oil at an average rate of 1,029 L/ha (110 US gal/acre), and high-yield rapeseed fields produce about 1,356 L/ha (145 US gal/acre). The ratio of input to output in these cases is roughly 1:12.5 and 1:16.5. Photosynthesis is known to have an efficiency rate of about 3-6% of total solar radiation[25]and if the entire mass of a crop is utilized for energy production, the overall efficiency of this chain is currently about 1%[26] While this may compare unfavorably to solar cells combined with an electric drive train, biodiesel is less costly to deploy (solar cells cost approximately US$1,000 per square meter) and transport (electric vehicles require batteries which currently have a much lower energy density than liquid fuels).

However, these statistics by themselves are not enough to show whether such a change makes economic sense.Additional factors must be taken into account, such as: the fuel equivalent of the energy required for processing, the yield of fuel from raw oil, the return on cultivating food, the effect biodiesel will have on food prices and the relative cost of biodiesel versus petrodiesel.

The debate over the energy balance of biodiesel is ongoing. Transitioning fully to biofuels could require immense tracts of land if traditional food crops are used (although non food crops can be utilized). The problem would be especially severe for nations with large economies, since energy consumption scales with economic output.[27]

Jika hanya menggunakan tumbuhan makanan tradisi, kebanyakan negara tidak memiliki tanah yang mencukupi bagi menghasilkan bahanapi bio bagi kenderaan negara. Negara dengan ekonomi lebih kecil (dengan itu kurang penggunaan tenaga) dan lebih banyak kawasan pertanian berada dalam keadaan lebih baik, sungguhpun kebanyakan kawasan tidak mampu mengalih tanah dari oenghasilan makanan.

For third world countries, biodiesel sources that use marginal land could make more sense; e.g., honge oil nuts grown along roads or jatropha grown along rail lines.[28]

Di kawasan tropika, seperti Malaysia dan Indonesia, minyak kelapa sawit ditanam pada kadar pantas bagi memenuhi permintaan biodiesel di Eropah dan pasaran lain. Ia telah dianggarkan di Jerman bahawa kos pengeluaran minyak biodiesel kelapa sawit hanyalan satu per tiga kos pengeluaran biodiesel rapeseed.[29] Sumber langsung bagi kandungan tenaga biodiesel merupakan tenaga suria yang diambil oleh tumbuhan semasa fotosintesis. Berkenaan imbangan tenaga positif biodiesel:

Apabila jerami ditinggalkan di ladang, pengeluaran biodiesel amat tenaga positif, menghasilkan 1 GJ biodiesel bagi setiap 0.561 GJ kemasukan tenaga (pecahan hasil/kos 1.78).Apabila jerami dibakar sebagai bahan api dan sisa oilseed digunakan sebagai baja, hasil/kos bagi pengeluaran biodiesel lebih baik (3.71). Dalam kata lai, bagi setiap unit kemasukan tenaga bagi menghasilkan biodiesel, output adalah 3.71 units (perbezaan 2.71 unit datangnya dari tenaga suria).

Rujukan

WikiPedia: Biodiesel http://www.fediol.be/2/index.php http://cgse.epfl.ch/page65660.html http://www.csmonitor.com/2006/0111/p01s03-sten.htm... http://epoxy.dow.com/epoxy/news/2007/20070326b.htm... http://www.dow.com/propyleneglycol/news/20070315b.... http://www.dupontelastomers.com/literature/viton/2... http://findarticles.com/p/articles/mi_m0CYH/is_15_... http://www.goodcleantech.com/2007/11/willie_nelson... http://translate.google.com/translate?u=https://en... http://www.hgca.com/content.output/2369/2369/Marke...